3.5.24 \(\int (a+b \cos (c+d x))^2 \sec ^3(c+d x) \, dx\) [424]

Optimal. Leaf size=59 \[ \frac {\left (a^2+2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d} \]

[Out]

1/2*(a^2+2*b^2)*arctanh(sin(d*x+c))/d+2*a*b*tan(d*x+c)/d+1/2*a^2*sec(d*x+c)*tan(d*x+c)/d

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 59, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {2868, 3852, 8, 3091, 3855} \begin {gather*} \frac {\left (a^2+2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {a^2 \tan (c+d x) \sec (c+d x)}{2 d}+\frac {2 a b \tan (c+d x)}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^3,x]

[Out]

((a^2 + 2*b^2)*ArcTanh[Sin[c + d*x]])/(2*d) + (2*a*b*Tan[c + d*x])/d + (a^2*Sec[c + d*x]*Tan[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2868

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Dist[2*c*(d/b)
, Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c,
 d, e, f, m}, x]

Rule 3091

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A*Cos[e +
 f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Dist[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)), Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]

Rule 3852

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Dist[-d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int (a+b \cos (c+d x))^2 \sec ^3(c+d x) \, dx &=(2 a b) \int \sec ^2(c+d x) \, dx+\int \left (a^2+b^2 \cos ^2(c+d x)\right ) \sec ^3(c+d x) \, dx\\ &=\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d}+\frac {1}{2} \left (a^2+2 b^2\right ) \int \sec (c+d x) \, dx-\frac {(2 a b) \text {Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=\frac {\left (a^2+2 b^2\right ) \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {2 a b \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 67, normalized size = 1.14 \begin {gather*} \frac {a^2 \tanh ^{-1}(\sin (c+d x))}{2 d}+\frac {b^2 \tanh ^{-1}(\sin (c+d x))}{d}+\frac {2 a b \tan (c+d x)}{d}+\frac {a^2 \sec (c+d x) \tan (c+d x)}{2 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*Cos[c + d*x])^2*Sec[c + d*x]^3,x]

[Out]

(a^2*ArcTanh[Sin[c + d*x]])/(2*d) + (b^2*ArcTanh[Sin[c + d*x]])/d + (2*a*b*Tan[c + d*x])/d + (a^2*Sec[c + d*x]
*Tan[c + d*x])/(2*d)

________________________________________________________________________________________

Maple [A]
time = 0.15, size = 69, normalized size = 1.17

method result size
derivativedivides \(\frac {a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 a b \tan \left (d x +c \right )+b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(69\)
default \(\frac {a^{2} \left (\frac {\sec \left (d x +c \right ) \tan \left (d x +c \right )}{2}+\frac {\ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{2}\right )+2 a b \tan \left (d x +c \right )+b^{2} \ln \left (\sec \left (d x +c \right )+\tan \left (d x +c \right )\right )}{d}\) \(69\)
risch \(-\frac {i a \left (a \,{\mathrm e}^{3 i \left (d x +c \right )}-4 b \,{\mathrm e}^{2 i \left (d x +c \right )}-a \,{\mathrm e}^{i \left (d x +c \right )}-4 b \right )}{d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}+\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 d}+\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right ) b^{2}}{d}-\frac {a^{2} \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 d}-\frac {\ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right ) b^{2}}{d}\) \(144\)
norman \(\frac {\frac {a \left (a -4 b \right ) \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a \left (a +4 b \right ) \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {a \left (3 a -4 b \right ) \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {a \left (3 a +4 b \right ) \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}}{\left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{2} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{2}}-\frac {\left (a^{2}+2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )}{2 d}+\frac {\left (a^{2}+2 b^{2}\right ) \ln \left (\tan \left (\frac {d x}{2}+\frac {c}{2}\right )+1\right )}{2 d}\) \(172\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*cos(d*x+c))^2*sec(d*x+c)^3,x,method=_RETURNVERBOSE)

[Out]

1/d*(a^2*(1/2*sec(d*x+c)*tan(d*x+c)+1/2*ln(sec(d*x+c)+tan(d*x+c)))+2*a*b*tan(d*x+c)+b^2*ln(sec(d*x+c)+tan(d*x+
c)))

________________________________________________________________________________________

Maxima [A]
time = 0.28, size = 87, normalized size = 1.47 \begin {gather*} -\frac {a^{2} {\left (\frac {2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 2 \, b^{2} {\left (\log \left (\sin \left (d x + c\right ) + 1\right ) - \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - 8 \, a b \tan \left (d x + c\right )}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="maxima")

[Out]

-1/4*(a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 - 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) - 2*b^2*(log(s
in(d*x + c) + 1) - log(sin(d*x + c) - 1)) - 8*a*b*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]
time = 0.45, size = 93, normalized size = 1.58 \begin {gather*} \frac {{\left (a^{2} + 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (\sin \left (d x + c\right ) + 1\right ) - {\left (a^{2} + 2 \, b^{2}\right )} \cos \left (d x + c\right )^{2} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \, {\left (4 \, a b \cos \left (d x + c\right ) + a^{2}\right )} \sin \left (d x + c\right )}{4 \, d \cos \left (d x + c\right )^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="fricas")

[Out]

1/4*((a^2 + 2*b^2)*cos(d*x + c)^2*log(sin(d*x + c) + 1) - (a^2 + 2*b^2)*cos(d*x + c)^2*log(-sin(d*x + c) + 1)
+ 2*(4*a*b*cos(d*x + c) + a^2)*sin(d*x + c))/(d*cos(d*x + c)^2)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (a + b \cos {\left (c + d x \right )}\right )^{2} \sec ^{3}{\left (c + d x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))**2*sec(d*x+c)**3,x)

[Out]

Integral((a + b*cos(c + d*x))**2*sec(c + d*x)**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 127 vs. \(2 (55) = 110\).
time = 0.44, size = 127, normalized size = 2.15 \begin {gather*} \frac {{\left (a^{2} + 2 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1 \right |}\right ) - {\left (a^{2} + 2 \, b^{2}\right )} \log \left ({\left | \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1 \right |}\right ) + \frac {2 \, {\left (a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 4 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} + a^{2} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 4 \, a b \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )}^{2}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*cos(d*x+c))^2*sec(d*x+c)^3,x, algorithm="giac")

[Out]

1/2*((a^2 + 2*b^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - (a^2 + 2*b^2)*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(
a^2*tan(1/2*d*x + 1/2*c)^3 - 4*a*b*tan(1/2*d*x + 1/2*c)^3 + a^2*tan(1/2*d*x + 1/2*c) + 4*a*b*tan(1/2*d*x + 1/2
*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^2)/d

________________________________________________________________________________________

Mupad [B]
time = 1.17, size = 99, normalized size = 1.68 \begin {gather*} \frac {\mathrm {atanh}\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\right )\,\left (a^2+2\,b^2\right )}{d}-\frac {{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (4\,a\,b-a^2\right )-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (a^2+4\,b\,a\right )}{d\,\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4-2\,{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*cos(c + d*x))^2/cos(c + d*x)^3,x)

[Out]

(atanh(tan(c/2 + (d*x)/2))*(a^2 + 2*b^2))/d - (tan(c/2 + (d*x)/2)^3*(4*a*b - a^2) - tan(c/2 + (d*x)/2)*(4*a*b
+ a^2))/(d*(tan(c/2 + (d*x)/2)^4 - 2*tan(c/2 + (d*x)/2)^2 + 1))

________________________________________________________________________________________